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Element Computer Program Output
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Post-processing algorithms are given to compute the vibratory elastic-rigid cou-
pling matrices and the modal contributions to the rigid-body mass matrices and
to the effective modal inertias and masses. Recomputation of the elastic-rigid cou-
pling matrices for a change in origin Is also described. A computational example
is included. The algorithms can all be executed by using standard finite-element
program eigenvalue analysis output with no changes to existing code or source pro-

grams.

l. Introduction

The concepts of effective vibratory modal mass [1] and
the application to the combined structural-mechanical-
control system model [2] are important tools in the analy-
sis and simulation [3] of the dynamic response of antennas
and other complex structures with stringent performance
or safety [4] requirements. Effective modal masses or iner-
tias and their components associated with particular coor-
dinate axes also provide the analyst with insight into the
characteristics of particular vibratory modes. Simplifica-
tions of the transient dynamic analysis procedures can be
facilitated by the convenience of identifying modes with
relatively insignificant masses or inertias associated with
the coordinate axis of interest. Such modes are candidates
for modal truncation and elimination from the analytical
model and replacement by contributions to residual masses
or inertias.

The following discussion will show how the key ma-
trix to this development, the elastic-rigid coupling ma-

trix, can be extracted from finite-element program eigen-
value analysis output, such as from the JPL-IDEAS [5],
NASTRAN [6], or other typical finite-element analysis pro-
grams. Generation of the modal effective inertia matrix
from the elastic-rigid coupling matrix follows readily. Fi-
nally, it will be shown how the effective inertia matrix with
respect to one reference origin can be modified to relate
a different origin by after-the-fact computations. Explicit
example calculations are included.

Il. Rigid-Body Mass Matrix and
Modal Contributions

A finite-element structure model with N nodes and
three translational and three rotational degrees of freedom
at each node has a rigid-body transformation matrix, ¢R,
with 6N rows and 6 columns. The columns refer to the
three rigid-body translational displacements in a Carte-
sian X-Y-7 coordinate system and the three correspond-
ing rigid-body rotations about these axes with respect to
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a selected reference point origin. That is, each set of six
rows of ¢R has the form:

rr 0 0o o dZ  —dY T
01 0 —dz 0 dX
typical nodal 0 0 1 dY —dX 0

sextet of = (1)
rows ofgR.

L0 0 0 0 0 1 ]

In the above, dX,dY, and dZ are the differences be-
tween the coordinates of the particular node and the ref-
erence point. Also, if, as in the JPL-IDEAS program, the
finite-element model does not contain rotational degrees of
freedom, only the first three rows are applicable and ¢R
is a 3N-by-6 matrix.

The elastic-rigid coupling matrix computation involves
the finite-element symmetrical physical mass matrix, M,
and the eigenvector matrix, ¢N. With three degrees of
freedom per node, the mass matrix size is 3N by 3N, and
in the special case when the complete eigenvector matrix
is available, this matrix is also the same size as the mass
matrix. The elastic-rigid coupling matrix, MER,, is com-
puted as

MER = ¢N' M ¢R. (2)

Note that MER has either 3N or 6 N rows and 6 columns.

A natural-vibration-mode generalized mass matrix,
MNN, is diagonal (from orthogonality of the normal
modes) and is computed from the eigenvectors and mass
matrix as

MNN = ¢N' M ¢N (3)

A rigid-body mass matrix, MRR, is ordinarily com-
puted from the coordinate geometry and the mass matrix.
However, it can also be computed from the previously men-
tioned expressions as

MRR = MER' MNN™"'MER (4)
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To show this, the eigenvector matrix must be complete.
Therefore, the inverse exists and substituting Eqs. (2) and
(3) in Eq. (4) leads to

MRR = ¢R' M ¢R (5)

which is the rigid-body mass matrix by definition.

The rigid-body mass matrix is square, with six rows
and columns. It is informative to partition MRR into four
3-by-3 matrices. If this is done, the upper left partition is
diagonal and contains the sums of the nodal masses (usu-
ally all identical) in the coordinate axes’ directions. The
upper right partition (and its transpose in the lower left)
contains the static (first) moments of the mass. Finally,
the lower right partition is the inertia tensor, which has the
mass moments of inertia about the respective coordinate
axes on the diagonal and the products of inertia as off-
diagonals. All dimensions implied in the computed terms
of this matrix are with respect to the reference point.

Usually not all columns of the eigenvector matrix are
available, or else, although available, some (or many)
columns are truncated to condense the solution and cal-
culations. The previous procedures will be applied to a
particular retained column of eigenvectors. In the follow-
ing, the subscript “;j” refers to terms associated with a
particular retained jth natural vibration mode. Thus, the
Jth mode elastic-rigid coupling matrix is the 1-by-6 row
matrix MER;;

MER; = ¢N;* M ¢R (6)

and the contribution to the rigid-body mass matrix is the
6-by-6 matrix MRR;;

MER;'MER,

MRRJ' = MNN, (7)

In MRR; above, the diagonals are the effective modal
masses (1 to 3) and mass moments of inertia (4 to 6),
which, when multiplied by the acceleration of gravity, are
equivalent to the “Reduction to the Diagonals of the Resid-
ual Weight Matrix” in the JPL-IDEAS output. As in the
discussion of the rigid-body mass matrix, the lower right-
hand 3-by-3 partition is the contribution of this natural
mode to the inertia tensor. If all these MRR,; matrices
were computed and summed, the sum would (to within
computer accuracy) be equal to the rigid-body mass ma-
trix of Eq. (5).



Ill. Recovery of Elastic-Rigid Modal
Coupling Matrices

In the JPL-IDEAS program formulation, the term
“weight” is used in place of “mass” and “inertia,” and
implies weight moment of inertia, rather than mass mo-
ment of inertia. The conversion to the conventional mass
formulation is made by dividing the respective weight
terms by the acceleration of gravity. JPL-IDEAS directly
provides a table of the elastic-rigid coupling weight ma-
trix for each natural frequency mode under the heading
“Un-Normalized Rigid Elastic Coupling Matrix.” The six
columns of the row matrix associated with each mode
are tabulated under the headings “SUMX SUMY SUMZ
SUMTX SUMTY SUMTZ.” The first three headings refer
to translational terms in the Cartesian axes’ directions,
and the last three refer to rotational terms about these
axes.

In general, the elastic-rigid modal coupling matrices are
not part of the usual output of finite-element programs.
However, they can be recovered by post-processing the
modal reactions. The computations use the jth mode re-
action vector, R;, and the jth mode circular frequency, w;.
Also, it is necessary to construct a rigid-body transforma-
tion matrix ¢RR for the reaction points. This matrix has
the same format as ¢R in Eq. (1), except that the differ-
ences in coordinates are between the reaction points and
the reference point. Consequently, from statics, the jth
mode reaction forces produce the following set of forces
and moments at the reference point:

FMR, = ¢RR' R; (8)

On the other hand, forces and moments at the reference
point for a natural mode of vibration can also be computed
directly from the masses at the nodal points. That is, if
F; are the forces of acceleration in the jth vibration mode,
then

Fj = —Wj2M¢Nj (9)

At the reference point, these forces produce a force and
moment vector F M N;, which from statics is:

FMN; = ¢R" F; (10)

Then, setting Eqs. (8) and (10) equal, using Eq. (9) and
transposing, then using Eq. (6) and solving for MER;
shows

R;'¢RR

= (11)

MER,; =

which is the algorithm that can be used to compute the
elastic-rigid coupling matrix.

IV. Changing the Reference Origin

If, after completing the previously described compu-
tations, there is the need to use an alternative reference
origin, it is not necessary to repeat all these computations.
Naturally, it is possible to repeat the procedure to recover
the MER; from the reactions by changing ¢RR accord-
ingly and repeating the computations of Eq. (11). How-
ever, if there are many components in the reaction matrix,
the following alternative could prove to be simpler.

To illustrate, let doz, doy, and doz be the change in co-
ordinates of the reference point, and DRR be the change
in $RR corresponding to doz, doy, and doz. Then, from
Eq. (11), the change in the elastic-rigid coupling matrix is

-R;' DéRR

DMER; = 5

. (12)

It is evident from Eq. (1) that DgRR will be null except
for the last three columns of the first three rows, which
will have the form:

4 6 (6

typical nodal triad 0 doz

for first three rows _
and last three -
columns of ¢R

~doy
(13)
doz 0 dox

doy —dozx 0

Therefore, it can be seen that only the fourth, fifth, and
sixth columns of MER,; will be affected. Concentrating
on the change in the fourth column of DMER;, Eq. (13)
can be rewritten as

0 0 0 doz
nodal change triad to
compute column 4 =10 0 1 doy (14)
of DMER

01 0

—doz

From Egs. (12), (14), and the form of Eq. (1), and by
identifying the components of MER. as the row vector
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MER; = |[C1 C2 €3 C4 C5 C6); (15)

it can be seen that the fourth column of DMER; can be
represented as

dox
DMER;(column 4) = |0 — C3 C2] { doy (16)

doz

By repeating a similar procedure for the fifth and sixth
columns and transposing, the result is

DMER;(columns 4, 5, 6) = [dox doy doz]C;  (17)

where
0 c3 —-C2
C;=|-C3 0 'l (18)
c2 -Cl1 0

V. Example Problem Computations

This example will illustrate computation of the elastic-
rigid coupling matrices, the modal contributions to the
rigid-body mass matrix and effective masses and inertias,
and the computation of the changes in the elastic-rigid
coupling matrix for a change in the reference origin.

The example structure is completely restrained in the
X, Y, and Z coordinate directions at three foundation
nodes. The analytical model represents only translational
degrees of freedom, so that #R and ¢RR. have three rows
for each of their associated nodes. The computations will
cover the first three natural modes.
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Table 1 contains the needed information supplied by the
finite-element program. This consists of the coordinates
of the foundation nodes, the reference origin, and partial
eigenvalue analysis output. The latter consists of the fre-
quencies and generalized masses and the reactions for the
first three natural modes. Note that for this problem, no
information other than the eigenvalue analysis frequencies,
generalized masses, and reactions is needed about the re-
mainder of the finite-element model or its response.

Table 2 shows the solutions for the modal contribu-
tions to the rigid-body mass matrices. The diagonal ele-
ments of these 6-by-6 matrices are the effective masses and
inertias. These provide a convenient, although partially
qualitative, means to characterize the nature of the vibra-
tion mode. For example, in the first natural mode there
will be almost no mass moving in the X and Z directions
(masses = 4.5e—04 and 1.49e—02), nor moment of iner-
tia with respect to rotations about the Y axis (inertia =
7.9e+01). The strong motion will be in the Y direction
(mass = 4.0e+0) with rotations about the X and Z axes
(inertias = 3.91e+04 and 1.37e404).

Table 3 illustrates the computations for the changes in
elastic-rigid coupling matrices when the reference origin is
changed. Here it can be seen that a change in only the
Z-coordinate of the origin produces changes only in the
rotational terms associated with the X and Z axes.

VI. Summary

Recovery of the elastic-rigid coupling matrices and com-
putations for the modal contributions to the rigid-body
mass matrix and effective modal masses and inertias have
been described. A method to recompute the elastic rigid
coupling matrix for a change in origin is also given. A com-
putational example is included to demonstrate the proce-
dures. All the described computations are performed by
post-processing of standard finite-element program eigen-
value analysis output and no modifications or code changes
in existing programs are required.
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Table 1. Example input data

Coordinates of the restrained nodes

X Y zZ
50 0 30
—50 0 0
0 100 -20

Coordinates of the reference point

X Y z

0 0 50

Eigenvalue analysis results

Mode 1 2 3
w 1.1920e+02 1.6000e+02 2.8570e+02
MNN 3.9327e4-00 5.8179¢+00 2.8151e+00
Reacti X 3.5228¢404  ~8.8273e404 —1.9411e+03
ease'(l’“ Y 5.9308e 402 3.4942e404  —8.4705¢404
no Z  —2.9574e404 1.5995¢+05 —1.9594e+05
Reaction ¥ —6.5662e+03  ~7.4353e+04  —2.5214c+03
nejde , Y —6.9630e+03  —3.3808c+04 2.8558¢+03
Z  —6.8021e404 —2.1592¢+05 4.1937¢4-04
Reaction X —2:9258¢404 2.5865e 404 7.9293¢4-04
qes Y —5.0125e404  -18745e+04  —1.2541e+05
node z 9.4154e+04 3.0557¢+04 2.1629¢+05




Table 2. Solutichs tor modal contributions

Relative coordinates of the restrained nodes

X Y A
50 0 -20
—-50 0 -50
0 100 70
¢} 0 0 —20 4]
Node 1 0 1 0 20 0 50
0 ¢ —-30 0
1 0 ¢} 0 —50 0
sRR = Node 2 0 1 0 50 0 -50
[Eq. (1)] 0 0 0 50 0
0 0 4] -70 —100
Node 3 0 1 ¢} 70 0 0
¢} 0 100 0 0
Columns of MER, Eq. (11)
Mode C1 c2 C3 C4 Cs Cé
1 4,1960e-02 3.9761e4-00 2.4218e—-01 —3.9204e+02 1.7633e+01 —2.3251e+4-02
2 5.3422e+400 6.8793e—01 9.9270e—01 —2.9375e+01 5.9066e+02 -3.3242e+401
—-9.1677e-01 2.5392e+00 —7.6309e¢-01 —1.3843e+402 —7.9734e+401 1.5078e+02
Modal contributrions to rigid body mass matrix, Eq. (7)
4.4771e—04 4.2424e-02 2.5840e—03 —4.1830e+00 1.8814e-01 —2.4808&4—00‘1
4.2424e—-02 4.0200e+00 2.4485e-01 —-3.9637e+02 1.7828e+-01 —2.3507e+02
MRR 2.5840e—03 2.4485e—-01 1.4913e—02 —2.4142e401 1.0859e+400 —1.4318e+401
1= —4.1830e+00 —3.9637e+02 —~2.4142e4-01 3.9082e+404 —1.7578e+03 2.3178e404
1.8814e-01 1.7828e401 1.0859e+400 —1.7578e4-03 7.9061e401 —1.0425e+4-03
L —2.4808e+00 —2.3507e+402 -1.4318e401 2.3178e4+04 —1.0425e+403 1.3746e+04 |
4.9055e+00 6.3169e—01 9.1154e-01 —-2.6973e+01 5.4237e402 —3.0524e+01 ]
6.3169e-01 8.1344e—-02 1.1738e-01 —3.4734e400 6.9843e+01 —3.9307e400
MER. 9.1154e—-01 1.1738e—01 1.6938e—01 —5.0122e4-00 1.0078e+02 ~5.6721e400
2= —2.6973e+01 —3.4734¢4-00 —5.0122e400 1.4831e+402 —~2.9823e+03 1.6784e402
5.4237e402 6.9843e4-01 1.0078e+02 ~2.9823e+03 5.9967e4-04 —3.3749e+03
L—3.0524e+01 —3.9307e+00 —5.6721e+00 1.6784e+02 —3.3749e403 1.8994e+4-02 |
2.9855e—-01 —8.2690e—01 2.4851e—01 4.5079e+01 2.5966e+01 —4.9102e401]
—8.2690e—-01 2.2903e+00 ~-6.8829¢—01 -1.2486e+02 —7.1918e+01 1.3600e4-02
MRR 2.4851e—01 —6.8829e-01 2.0685e-01 3.7523e+01 2.1613e+01 —4.0872e+01
3= 4.5079¢+01 —1.2486e+02 3.7523e+401 6.8067e+03 3.9207e+03 —7.4142¢+03
2.5966e+01 —7.1918e+01 2.1613e+01 3.9207e+03 2.2583e+03 —4.2706e+03
L—4.9102€+01 1.3600e+02 —4.0872¢+01 —7.4142e+03 —4.2706e+03 8.0758e+03 |
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Table 3. Solutions for change of origin

Change in reference origin

Y zZ
Original 0 50
New 0 0
Change 0 —-50
Mode 1
2.4218e-01 —3.9761e+400
= -2. 4218& 01 0 4.1960e—-02
8 3.9761e4-00 -4.1960e—~02 0
Eq. (177 DMER = [0 0 0 —1.9880e+402 2.0980e+00 0]
Mode 2
0 9.9270e—01 —6.8793e—01
C = —9.9270e-01 0 5.3422¢+00
6.8793e—~01 —5.3422e¢+00 0
DMER= [0 0 0 —3.4396e+01 2.6711e+02 0]
Mode 3
0 —7.6309e—01 —2.5392e+00
C = 7.6309e—-01 0 9.1677e—-01
2.5392e4-00 9.1677e-01 0
DMER = [0 0 0 —1.2696e+02 —4.5838e+01 0]




